Chapter 17 Endocrine System

- Overview
- · Hypothalamus and pituitary gland
- Other endocrine glands
- · Hormones and their actions
- · Stress and adaptation
- Eicosanoids and paracrine signaling
- · Endocrine disorders

Overview of Cell Communications • Necessary for integration of cell activities • Mechanisms Plasma Extracellular membrane Connexon (hemichannel) Interior of cell 2

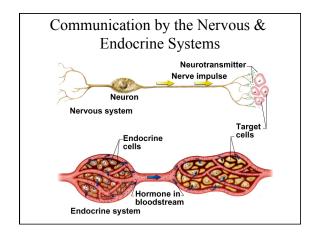
Components of Endocrine System

• Hormone

· Target cells

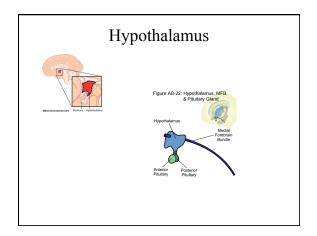
• Endocrine system

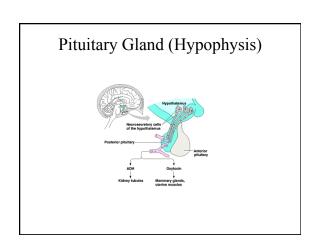
Endocrine Organs Hypothalamus Pituitary gland Pineal gland Thyroid gland Parathyroid glands (on dorsal aspect of thyroid gland) Thymus Adrenal glands Pancreas Gonads Ovaries (female) Testes (male)

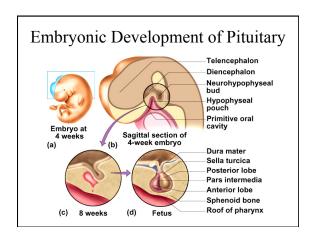

· Major organs of endocrine system

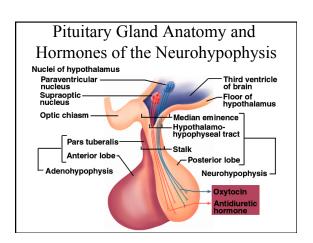
Endocrine vs. Exocrine Glands

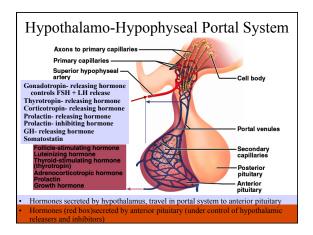
- · Exocrine glands
- · Endocrine glands
- Endocrine system

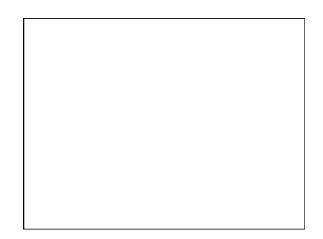

Differences in Nervous and Endocrine Systems

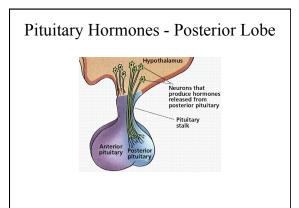

- Means of communication
- Speed and persistence of response
- · Adaptation to long-term stimuli
- · Area of effect




Similarities in Nervous and Endocrine Systems


- Several chemicals function as both hormones and neurotransmitters
- Some hormones secreted by neuroendocrine cells (neurons)
- Both systems with overlapping effects on same target cells
- Systems regulate each other





Anterior Pituitary Hormones Hypothalamus TRH GRRH GRRH GRH GRH IGF Fat, muscle, bone Principle hormones and target organs shown Axis - refers to way endocrine glands interact

Pituitary Hormones - Pars Intermedia

- Absent from adult human although present in fetus
- · Reminant cells
 - produce POMC (pro-opiomelanocortin) which is processed into ACTH and endorphins
- Produces MSH in animals influencing pigmentation of skin, hair or feathers
 - not apparently present/functioning in humans

Pituitary Hormone Actions:

Anterior Lobe Hormones

- FSH (secreted by gonadotrope cells)
- LH (secreted by gonadotrope cells)
- TSH (secreted by thyrotropes)

Pituitary Hormone Actions:

Anterior Lobe Hormones

- ACTH or corticotropin (secreted by corticotropes)
- PRL (secreted by lactotropes)
- GH or somatotropin see next 2 slides

Growth Hormone

- · Secreted by somatotropes of anterior pituitary
- · Promotes tissue growth
- · Functions of GH-IGF

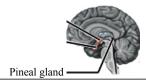
Growth Hormone and Aging

- · Childhood and adolescence
- · Adulthood
- Levels of GH

Pituitary Hormone Actions:

Posterior Lobe Hormones

- ADH
 - targets kidneys to ↑ water retention, reduce urine
 - also functions as neurotransmitter
- Oxytocin
 - labor contractions, lactation
 - possible role sperm transport, emotional bonding


Control of Pituitary: Hypothalamic and Cerebral Control

- Anterior lobe control releasing hormones and inhibiting hormones of hypothalamus
- Posterior lobe control neuroendocrine reflexes

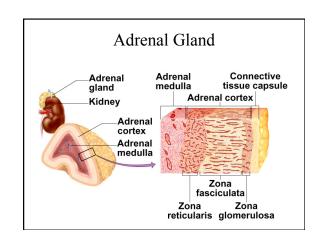
Control of Pituitary: Feedback from Target Organs • Negative feedback Inhibition * Positive feedback * Positive feedback

Pineal Gland

- Peak secretion 1-5 yr. olds, by puberty 75% lower
- Produces serotonin by day, converts it to melatonin at
- · May regulate timing of puberty in humans
- Melatonin ↑ in SAD + PMS, ↓ by phototherapy
 - depression, sleepiness, irritability and carbohydrate craving



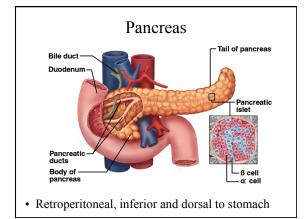
Thymus · Location: mediastinum, superior to heart · Involution after puberty Secretes hormones that regulate development and later activation of T-lymphocytes - thymopoietin and thymosins Larynx Thyroid gland Trachea Thymus


Lung

Thyroid Gland Anatomy Superior —— thyroid artery and vein Thyroid cartilage Isthmus Inferior thyroid

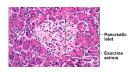
- · Largest endocrine gland with high rate of blood flow
- Anterior and lateral sides of trachea
- 2 large lobes connected by isthmus

Parathyroid Glands · PTH release Pharynx ——— (posterior view) - ↑ blood Ca+2 levels - promotes synthesis of calcitriol Thyroid gland ↑ absorption of Ca⁺² Parathyroid glands ↓ urinary excretion • ↑ bone resorption

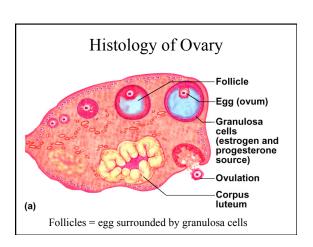


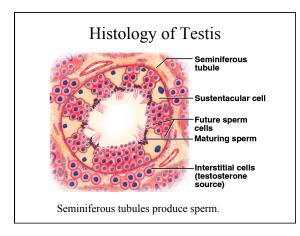
Adrenal Medulla

- Sympathetic ganglion innervated by sympathetic preganglionic fibers
- Hormonal effect is longer lasting
- Stress causes medullary cells to stimulate cortex


Adrenal Cortex

- Layers -- (outer) zona glomerulosa, (middle) zona fasciculata, (inner) zona reticularis
- · Corticosteroids

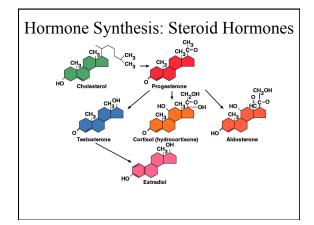

Pancreatic Hormones

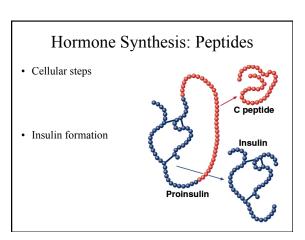

- 1-2 Million pancreatic islets producing hormones 98% of organ produces digestive enzymes (exocrine)
- Insulin (from β cells)

Pancreatic Hormones 2

- Glucagon (from α cells)
- Somatostatin from delta (δ) cells)
- · Hyperglycemic hormones raise blood glucose
- Hypoglycemic hormones lower blood glucose

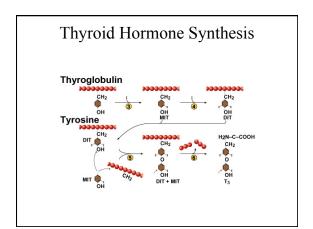
Endocrine Functions of Other Organs


- Heart -
 - atrial natriuretic peptide released with an increase in BP
 - — ↓ blood volume + ↓ BP by ↑ Na⁺ and H₂O loss by kidneys
- Skir
 - keratinocytes help produce D3, first step in synthesis of calcitriol
- Liver
 - converts vitamin D3 to calcidiol
 - source of IGF-I that works with GH
 - secretes about 15% of erythropoietin
 - secretes angiotensinogen (a prohormone)
 - · precursor of angiotensin II, a vasoconstrictor

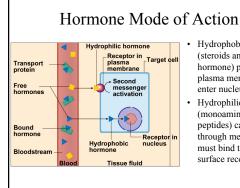

Endocrine Functions of Other Organs

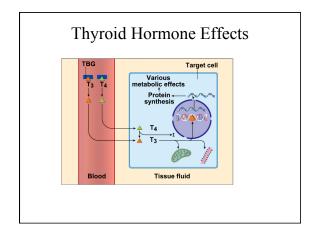
- Kidneys
 - converts calcidiol to calcitriol (active form of vitamin D)
 - † absorption by intestine and inhibits loss in the urine
 - more Ca+2 available for bone deposition
 - produces 85% of erythropoietin -
 - · stimulates bone marrow to produce RBC's
 - convert angiotensinogen to angiotensin I
- Stomach and small intestines (10 enteric hormones)
 - coordinate digestive motility and secretion
- Placenta
 - secretes estrogen, progesterone and others
 - · regulate pregnancy, stimulate development of fetus and mammary glands

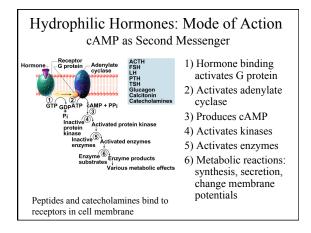
Hormone Chemistry

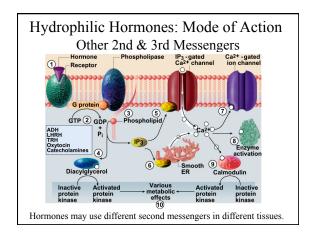

- · Steroids
 - derived from cholesterol
 - · sex steroids, corticosteroids
- · Peptides and glycoproteins
 - OT, ADH; all releasing and inhibiting hormones of hypothalamus; most of anterior pituitary hormones
- Monoamines (biogenic amines)
 - derived from amino acids
 - catecholamines (norepinephrine, epinephrine, dopamine) and thyroid hormones

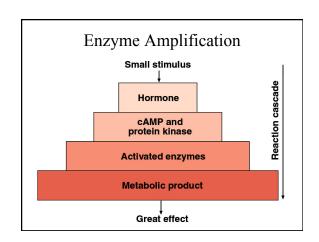
Hormone Synthesis: Monoamines


Thyroid Hormone Synthesis (1) I- transported into cell then (2) I- \pm thyroglobulin released into lumen (3-5 next slide) (6)TSH stimulates pinocytosis, lysosome liberates TH, carried by thyroxine-binding globulin

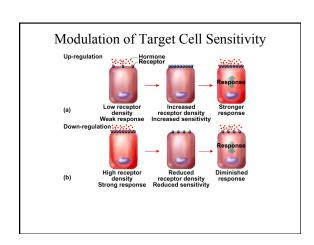

Hormone Transport

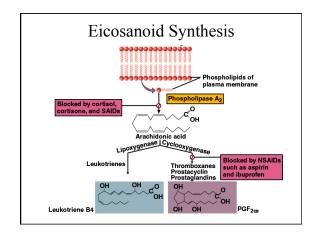

- Monoamines and peptides are hydrophilic so mix easily with blood plasma
- Steroids and thyroid hormone are hydrophobic and must bind to transport proteins for transport
- · Transport proteins in blood plasma


Hormone Receptors



- Hydrophobic hormones
 - (steroids and thyroid hormone) penetrate plasma membrane enter nucleus
 - Hydrophilic hormones (monoamines and peptides) can not pass through membrane so must bind to cellsurface receptors




Hormone Clearance

Hormone Interactions	Stress and Adaptation
Alarm Reaction	Stage of Resistance
Stage of Exhaustion	Paracrine Secretions Chemical messengers that diffuse short distances and stimulate nearby cells unlike neurotransmitters not produced in neurons unlike hormones not transported in blood Examples and their functions histamine from mast cells in connective tissue causes relaxation of blood vessel smooth muscle nitric oxide from endothelium of blood vessels causes vasodilation somatostatin from gamma cells inhibits secretion of alpha and beta cells in pancreas catecholamines diffuse from adrenal medulla to cortex

Eicosanoids: a Paracrine Secretion

- Derived from arachidonic acid (fatty acid)
- Hormone releases arachidonic acid from plasma membrane and 2 enzymes convert it into eicosanoids

Endocrine Disorders

- Variations in hormone concentration and target cell sensitivity have noticeable effects on the body
- Hyposecretion inadequate hormone release
 tumor or lesion destroys gland
- Hypersecretion excessive hormone release
 tumors or autoimmune disorder

Pituitary Disorders

- · Hypersecretion of growth hormones
 - acromegaly
 - thickening of the bones and soft tissues
 - problems in childhood or adolescence
 - · gigantism if oversecretion
 - · dwarfism if hyposecretion

Thyroid Gland Disorders

- Congenital hypothyroidism (↓ TH)
 - infant suffers abnormal bone development, thickened facial features, low temperature, lethargy, brain damage
- Myxedema (adult hypothyroidism, ↓ TH)
 - low metabolic rate, sluggishness, sleepiness, weight gain, constipation, dry skin and hair, cold sensitivity, \understand
 blood pressure and tissue swelling
- Endemic goiter (goiter = enlarged thyroid gland)
 - dietary iodine deficiency, no TH, no feedback, ↑ TSH
- Toxic goiter (Graves disease)
 - antibodies mimic TSH, †TH, exophthalmos

Endemic Goiter

Parathyroid Disorders

- · Hypoparathyroid
 - surgical excision during thyroid surgery
 - fatal tetany 3-4 days
- Hyperparathyroid = excess PTH secretion
 - tumor in gland
 - causes soft, fragile and deformed bones
 - ↑ blood Ca⁺²
 - renal calculi

Adrenal Disorders

- Cushing syndrome is excess cortical secretion
 - causes hyperglycemia, hypertension, weakness, edema
 - muscle and bone loss occurs with protein catabolism
- buffalo hump & moon face = fat deposition between shoulders or in face
- Adrenogenital syndrome (AGS)
 - adrenal androgen hypersecretion accompanies Cushing
 - causes enlargement of external sexual organs in children & early onset of puberty
 - masculinizing effects on women (deeper voice & beard growth)

Diabetes Mellitus

- Signs and symptoms of hyposecretion of insulin
 - polyuria, polydipsia, polyphagia
 - hyperglycemia, glycosuria, ketonuria
 - osmotic diuresis: blood glucose levels rise above transport maximum of kidney tubules, glucose remains in urine, osmolarity † and draws water into urine
- Transport maximum of glucose reabsorption
 - kidney tubules can not reabsorb glucose fast enough if no insulin is present
 - osmotic diuresis results due to excess glucose and ketones in tubules

Types of Diabetes Mellitus

- Type I (IDDM) 10% of cases
 - some cases have autoimmune destruction of β cells, diagnosed about age 12 $\,$
 - treated with diet, exercise, monitoring of blood glucose and periodic injections of insulin or insulin pump
- Type II (NIDDM) 90%
 - insulin resistance
 - · failure of target cells to respond to insulin
 - 3 major risk factors are heredity, age (40+) and obesity
 - treated with weight loss program of diet and exercise,
 - oral medications improve insulin secretion or target cell sensitivity

Pathology of Diabetes

- Acute pathology: cells cannot absorb glucose, rely on fat and proteins (weight loss + weakness)
 - fat catabolism ↑ FFA's in blood and ketone bodies
 - ketonuria promotes osmotic diuresis, loss of Na⁺ + K⁺
 - ketoacidosis occurs as ketones ↓ blood pH
 - if continued causes dyspnea and eventually diabetic coma
- · Chronic pathology
 - chronic hyperglycemia leads to neuropathy and cardiovascular damage from atherosclerosis
 - retina and kidneys (common in type I), atherosclerosis leading to heart failure (common in type II), and gangrene

Hyperinsulinism

- From excess insulin injection or pancreatic islet tumor
- · Causes hypoglycemia, weakness and hunger
 - triggers secretion of epinephrine, GH and glucagon
 side effects: anxiety, sweating and † HR
- · Insulin shock
 - uncorrected hyperinsulinism with disorientation, convulsions or unconsciousness