

Chapter 18

Energy Efficiency and Renewable Energy

Copyright © 2017 by Nelson Education Ltd.

Key Concepts

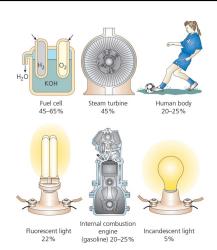
Energy efficiency

Renewable energy resources

- Solar (heat, electricity)
- Water (hydroelectricity, tidal)
- Wind
- Biomass
- Geothermal

Use of hydrogen as a fuel

Micropower

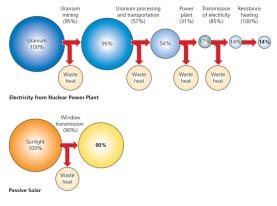

Economics and politics of renewable energy

Copyright © 2017 by Nelson Education Ltd.

-

What Is Energy Efficiency?

Useful energy produced by a device compared to total energy output (including heat)



Copyright © 2017 by Nelson Education Ltd.

What Is Net Energy Efficiency?

To improve net energy efficiency:

- 1. Minimize the number of conversion steps
- 2. Maximize the efficiency of each step

Copyright © 2017 by Nelson Education Ltd.

5

Reducing Energy Waste

FIGURE 18-2 SOLUTIONS Reducing Energy Waste Advantages of reducing energy waste. Global improvements in energy efficiency could save the world about \$1 trillion (U.S.) per year—an average of \$114 million per hour! · Prolongs fossil fuel supplies · Reduces oil imports Very high net energy Low cost Reduces pollution and environmental degradation Buys time to phase in renewable energy · Less need for military protection of Middle East oil resources · Improves local economy by reducing flow of money out to pay for energy Creates local jobs © Eugene Shapovalov/Shutterstock Copyright © 2017 by Nelson Education Ltd.

Ways to Improve Energy Efficiency

Industry

- Cogeneration
- Replace inefficient electric motors
- Higher efficiency lighting

Transportation

- Increased fuel economy
- Hybrid-electric vehicles
- Fuel-cell vehicles

Building Design

- Insulation
- Energy-efficiency standards for fixtures

Copyright © 2017 by Nelson Education Ltd.

.

How Can We Save Energy in Industry?

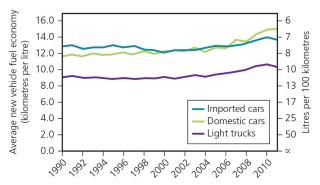
Cogeneration (combined heat and power [CHP])

- Produce two useful forms of energy
 - For example, steam + electricity
- Energy efficiency: 80-90%
 - vs. 30-40% for coal/nuclear electricity-only
- 66% less CO₂ per unit of energy than coal

Replace inefficient electric motors

- Inefficient non-adjustable power output
- May consume 10x more power than it cost to purchase

Higher efficiency lighting


- Fluorescent or LED

Copyright © 2017 by Nelson Education Ltd.

How Can We Save Energy in Transportation?

• Fuel Efficiency

- Promote stronger minimum standards, offer tax breaks

Source: Data from the Research and Innovative Technology Administration, 2012

Copyright © 2017 by Nelson Education Ltd.

0

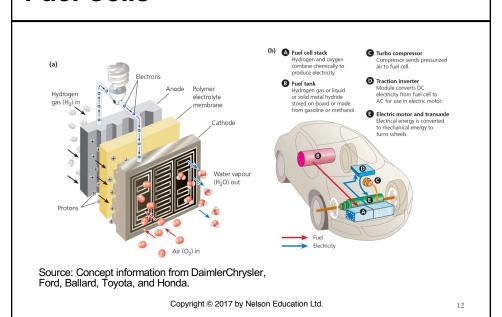
All-Electric Car

Problem is the distance one can drive on a single charge Tesla Model S runs for

about 400 kilometres. But it's very expensive.

© JOHANNES EISELE/Getty Images

Copyright © 2017 by Nelson Education Ltd.


Hybrid-Electric Internal Combustion

- Increases fuel efficiency by only using the gasoline engine for acceleration or hill climbing
- Relies on rechargeable electric motor for all other functions
- The Chevy Volt even recharges itself, using the gasoline engine.

Copyright © 2017 by Nelson Education Ltd.

11

Fuel Cells

How Can We Save Energy in Buildings?

1. Building Design: Superinsulated Housing

Copyright © 2017 by Nelson Education Ltd.

13

How Can We Save Energy in Buildings? Continued

2. Modifications to existing buildings

Insulate and plug leaks.

Use energy-efficient windows.

Stop other heating/cooling losses.

Use efficient house and water heating.

Use efficient lighting.

Unplug devices when not in use.

Copyright © 2017 by Nelson Education Ltd.

How Can We Save Energy in Buildings? Continued 2

Healthy House in Toronto

Source: Canada Mortgage and Housing Corporation (CMHC). CMHC's Family-Occupied Healthy House in Toronto, 2010. All rights reserved. Reproduced with the consent of CMHC. All other uses and reproductions of this material are expressly prohibited.

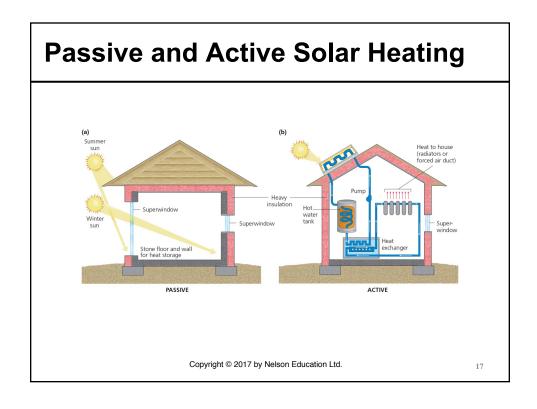
Copyright © 2017 by Nelson Education Ltd.

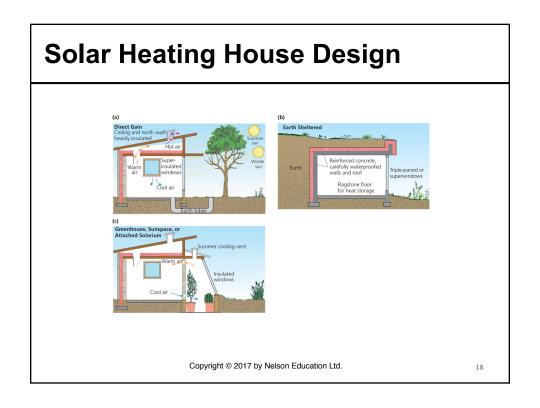
15

Main Types of Renewable Energy

Solar

Flowing water


Wind


Biomass

Geothermal

Hydrogen fuel

Copyright © 2017 by Nelson Education Ltd.

Passive or Active Solar Heating

FIGURE 18-16 TRADE-OFFS

Passive or Active Solar Heatin

Advantages and disadvantages of heating a house with passive or active solar energy. Pick the single advantage and the single disadvantage that you think are the most important.

dvantages

- · Energy is free.
- Net energy is moderate (active) to high (passive).
- Quick installation
- No CO₂ emissions
- Very low air and water pollution
- · Very low land disturbance (built into roof or window)
- Moderate cost (passive)

Disadvantages

- . Needs access to sun 60% of the time
- · Blockage of sun access by other structures
- Needs heat storage system
- High cost (active)
- Active system needs maintenance and repair
- Active collectors unattractive

(Left): © Pavel Vakhrushev/Shutterstock; (Right): © Yulia Grigoryeva/Shutterstock

Copyright © 2017 by Nelson Education Ltd.

19

Solar Energy for High-Temperature Heat and Electricity

FIGURE 18-17 TRADE-OFFS

Solar Energy for High-Temperature Heat and Electricity

Advantages and disadvantages of using solar energy to generate high-temperature heat and electricity. Pick the single advantage and the single disadvantage that you think are the most important.

Parties ST Durch Medical Confession of the Confe

Advantages

- Moderate net energy
- Moderate environmental impact
- No CO₂ emissions
- Fast construction (1–2 years)
- Costs reduced with natural gas turbine backup

Disadvantages

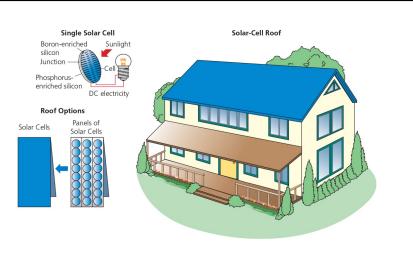
- Low efficiency
- High costs
- Need backup or storage system
- · Need access to sun most of the time
- High land use
- May disturb desert areas

(Left): © Pavel Vakhrushev/Shutterstock; (Right): © Yulia Grigoryeva/Shutterstock

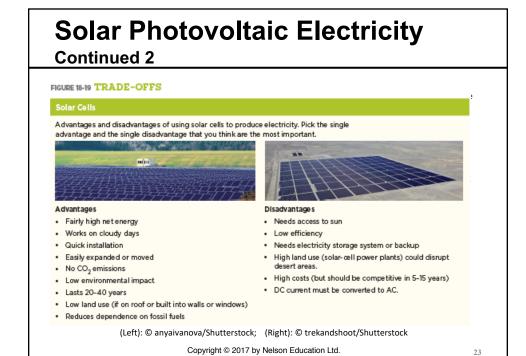
Copyright © 2017 by Nelson Education Ltd.

Solar Photovoltaic Electricity

Photovoltaic (PV) cells use a semiconductor to absorb light and directly generate DC electrical current.


R&D advances in thinner, cheaper, and flexible materials for PV.

Copyright © 2017 by Nelson Education Ltd.


21

Solar Photovoltaic Electricity

Continued

Copyright © 2017 by Nelson Education Ltd.

Producing Electricity From the Water Cycle

Water flow from high to low elevations in rivers and streams can be used to turn a turbine and generate electricity.

Electricity supplied by hydroelectric power (2012)

- -19% globally
- -97% in Norway
- -52% in New Zealand
- -60% in Canada
- -17% in China
- -7% in the United States

Copyright © 2017 by Nelson Education Ltd.

Producing Electricity From the Water Cycle: Large- or Small-Scale?

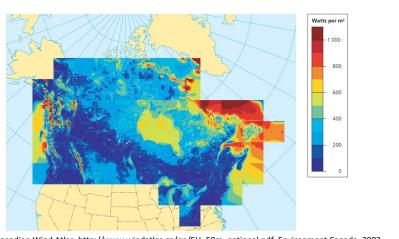
Streamflow can be controlled and more power generated by the use of a **dam** or **reservoir**.

Large-scale hydropower

- High dam across a large river to create a reservoir
- Issues with flooding, ecological impact on fish

Small-scale (run-of-river) hydropower

- Low or no dam used in a small stream
- Lower impact, but less reliable flow/output


Copyright © 2017 by Nelson Education Ltd.

25

Producing Electricity From the Water Cycle: Large Scale Hydropower–Trade-Offs

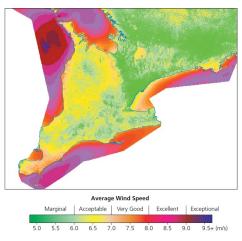
FIGURE 18-21 TRADE-OFFS Advantages and disadvantages of using large dams and reservoirs to produce electricity. Pick the single advantage and the single disadvantage that you think are the most important. · Moderate to high net energy · High construction costs High environmental impact from flooding land to form High efficiency (90%) · Large untapped potential High CO₂ emissions from biomass decay in shallow · Low-cost electricity tropical reservoirs · Floods natural areas behind dam No CO₂ emissions during operation in Converts land habitat to lake habitat temperate areas Danger of collapse · May provide flood control below dam Uproots people Provides water for year-round irrigation of cropland · Decreases fish harvest below dam Reservoir is useful for fishing and recreation. · Decreases flow of natural fertilizer (silt) to land below dam (Left): © Petr Malyshev/Shutterstock; (Right): © Andrew Zarivny/Shutterstock Copyright © 2017 by Nelson Education Ltd. 26

Producing Electricity from Wind: Available Wind Energy in Canada

Source: Canadian Wind Atlas, http://www.windatlas.ca/en/EU_50m_national.pdf, Environment Canada, 2003. Reproduced with the permission of the Minister of Public Works and Government Services Canada, 2012. © Her Majesty the Queen in Right of Canada, as represented by the Minister of the Environment, 2003.

Copyright © 2017 by Nelson Education Ltd.

27


Producing Electricity from Wind: Installed Windmill Capacity Across Canada

Source: Courtesy of Canadian Wind Energy Association (CanWEA).

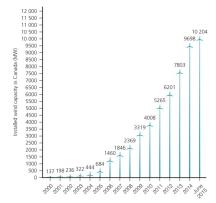
Copyright © 2017 by Nelson Education Ltd.

Producing Electricity from Wind: Wind Energy in Ontario

Source: Ontario Ministry of Natural Resources Wind Resource Atlas, http://www.ontariowindatlas.ca/en.

Copyright © 2017 by Nelson Education Ltd.

29


Producing Electricity from Wind: Growth of Wind Energy

Second fastest-growing source of energy

- More than 100x since 1990

Existing installed capacity (2014)

- China 31%
- United States 18%
- Canada 2.6% (7th ranked)

Source: Courtesy of Canadian Wind Energy Association (CanWEA).

Copyright © 2017 by Nelson Education Ltd.

Producing Electricity from Wind: Growth of Wind Energy continued

Newly installed capacity (during 2014)

- China 45%
- United States 9%
- Canada 3.6% (6th ranked)

Untapped available resource (2009)

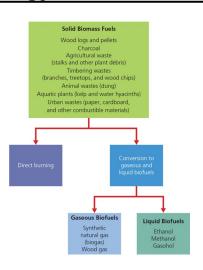
- Canada: 40x current electricity needs

Copyright © 2017 by Nelson Education Ltd.

31

Wind Power: Trade-Offs

FIGURE 18-27 TRADE-OFFS Advantages and disadvantages of using wind to produce electricity. Wind power experts project that by 2025 wind power could supply more than 10% of the world's electricity and 20% of the electricity used in Canada. Pick the single advantage and the single disadvantage that you think are the most important. Advantages · Moderate to high net energy yield Steady winds needed High efficiency . Backup systems needed when winds are low Moderate capital cost High land use for wind farm Low electricity cost (and falling) Visual pollution Very low environmental impact · Noise when located near populated areas No CO₂ emissions May interfere in flights of migratory birds and kill birds Quick construction of prey · Can be located at sea Land below turbines can be used to grow crops or graze livestock. (Left): $\mathbb O$ Rene Hartmann/Shutterstock; (Right): $\mathbb O$ pedrosala/Shutterstock


Copyright @ 2017 by Nelson Education Ltd.

How Is Biomass Used to Provide Energy?

Made of plant materials and animal wastes Solid biomass

Burned directly as fuel

Gaseous biofuels Liquid biofuels

Copyright © 2017 by Nelson Education Ltd.

33

Solid Biomass

FIGURE 18-29 TRADE-OFFS

Solid Biomass

General advantages and disadvantages of burning solid biomass as a fuel. Pick the single advantage and single disadvantage that you think are the most important.

Advantages

- · Large potential supply in some areas
- Moderate costs
- No net CO₂ increase if harvested and burned sustainably
- Plantations can be located on semiarid land not needed for crops.
- Plantations can help restore degraded lands.
- · Can make use of agricultural, timber, and urban wastes

Disadvantage

- · Nonrenewable if harvested unsustainably
- Moderate to high environmental impact
- CO₂ emissions if harvested and burned unsustainably
- Low photosynthetic efficiency
- · Soil erosion, water pollution, and loss of wildlife habitat
- · Plantations could compete with cropland.
- Often burned in inefficient and polluting open fires and stores.

(Left): ${\Bbb C}$ chocorange/Shutterstock; (Right): ${\Bbb C}$ janceluch/Shutterstock

Copyright © 2017 by Nelson Education Ltd.

Biodiesel

Diesel fuel made from biomass

Has low carbon emissions and no sulphur
But it has lower caloric value than
conventional diesel
Can also "gel" at low temperatures,
harming engines

Copyright © 2017 by Nelson Education Ltd.

34

Biogas

Bacteria convert biomass into gaseous biofuels
Inefficient, unreliable, and generates CO₂

Copyright © 2017 by Nelson Education Ltd.

Using Liquid Ethanol for Fuel

FIGURE 18-30 TRADE-OFFS

Ethanol Fuel

General advantages and disadvantages of using ethanol as a vehicle fuel compared to gasoline. Pick the single advantage and single disadvantage that you think are the most important.

Advantages

- High octane
- Some reduction in CO₂ emissions
- Reduced CO emissions
- Can be sold as gasohol
- Potentially renewable

Disadvantages

- Large fuel tank needed
- Lower driving range
- Net energy loss
- Much higher cost
- Corn supply limited
- · May compete with growing food on cropland
- · Higher NO emissions
- Corrosive
- · Hard to start in cold weather

(Left): © Carolina K. Smith MD/Shutterstock; (Right): © Tanja Mijatov/Shutterstock

Copyright © 2017 by Nelson Education Ltd.

37

What Is Geothermal Energy?

Geothermal heat pumps
Geothermal exchange
Dry and wet steam
Hot water
Molten rock (magma)
Hot dry-rock zones and
warm-rock reservoirs

Current Usage

22 countries (mostly developing nations) Only 1% of global electricity

Copyright © 2017 by Nelson Education Ltd.

Geothermal Energy: Trade-offs

FIGURE 18-32 TRADE-OFFS

Geothermal Energy

Advantages and disadvantages of using geothermal energy for space heating and to produce electricity or high-temperature heat for industrial processes. Pick the single advantage and the single disadvantage that you think are the most important.

Advantage s

- Very high efficiency
- · Moderate net energy at accessible sites
- Lower CO₂ emissions than fossil fuels
- Low cost at favourable sites
- Low land use
- Low land disturbance
- · Moderate environmental impact

Disadvantages

- Scarcity of suitable sites
- Depleted if used too rapidly
- CO₂ emissions
- · Moderate to high local air pollution
- Noise and odour (H₂S)
- · Cost too high except at the most concentrated and accessible sources

(Left): © aurin/Getty Images; (Right): © dmitry_islentev/Shutterstock

Copyright © 2017 by Nelson Education Ltd.

39

Hydrogen: Can Hydrogen Replace Oil?

Hydrogen isn't a primary energy resource;

it is a **fuel** we produce to store and use energy.

FIGURE 18-33 TRADE-OFFS

Advantages and disadvantages of using hydrogen as a fuel for vehicles and for providing heat and electricity. Pick the single advantage and the single disadvantage that you think are the most important

- Low environmental impact Renewable if produced from renewable energy resources
- No CO₂ emissions if produced from water
- Good substitute for oil
- Competitive price if environmental and social costs are included in cost comparisons
- · Easier to store than electricity
- Safer than gasoline and natural gas
- High efficiency (45-65%) in fuel cells

Disadvantage s

- Energy is needed to produce fuel
- Negative net energy (energy loss)
- CO₂ emissions if produced from carbon-contain compounds
- Nonrenewable if generated by fossil fuels or nuclear power High costs (but may eventually come down)
- Will take 25-50 years to phase in
 Short driving range for current fuel cell cars
- No fuel distribution system in place
- Excessive H₂ leaks may deplete ozone

(Left): © Brooks Kraft/Corbis; (Right): Courtesy of Lawrence Livermore National Laboratory

Copyright © 2017 by Nelson Education Ltd.

Hydrogen Fuel Production

Hydrogen gas does not generally occur in nature.

- It is chemically locked up in water or hydrocarbons.

Current technology for generating H₂

- Electrolysis from water
 - Uses large amounts of electricity (usually from fossil fuels)
- Cracking hydrocarbons
 - Generates more CO₂ than simply burning the fossil fuels

Future alternative methods for H₂ production

- H₂-producing algae
- Direct from water using sunlight and chemical catalysts

Copyright © 2017 by Nelson Education Ltd.

41

Hydrogen Storage

We don't yet know how best to store H₂, unlike current fuels.

Compressed gas

- Low energy density + safety concerns

Liquid hydrogen

Low temperature required uses money and energy

Copyright © 2017 by Nelson Education Ltd.

Hydrogen Storage continued

Metal hydrides

- Chemically bound to metal compounds

Adsorption on carbon

- Activated charcoal or graphite

Trapping in nanostructured molecules

- Clathrate hydrates or glass microspheres

All of these illustrate a problem: Hydrogen costs energy to make AND to store.

Copyright © 2017 by Nelson Education Ltd.

43

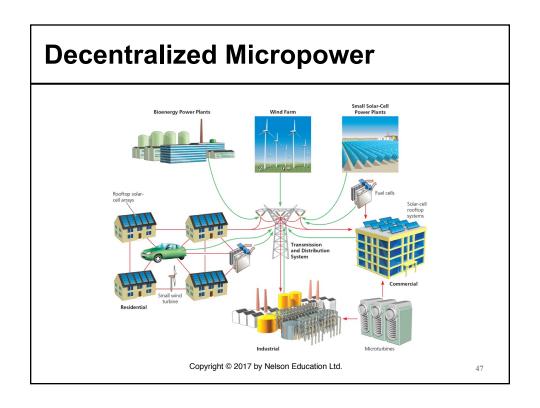
What Is Micropower?

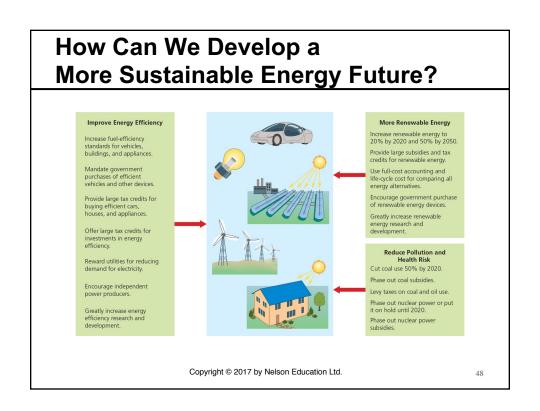
Decentralization
Dispersed, small-scale generation
Smart metering for transmission and distribution

Copyright © 2017 by Nelson Education Ltd.

Advantages of Micropower

- Small modular units
- Fast factory production
- Fast installation (hours to days)
- Can add or remove modules as needed
- High energy efficiency (60%-80%)
- Low or no CO₂ emissions
- Low air pollution emissions


Copyright © 2017 by Nelson Education Ltd.


45

More Advantages of Micropower

- Reliable
- Easy to repair
- Much less vulnerable to power outages
- Increase national security by dispersal of targets
- Useful anywhere
- Especially useful in rural areas in developing countries with no power
- Can use locally available renewable energy resources
- Easily financed (costs included in mortgage and commercial load)

Copyright © 2017 by Nelson Education Ltd.

Conclusion

Many potential sources of renewable energy.

All require investment, both financially and conceptually.

We need to rethink our relationship with energy, its generation, and its distribution.

Copyright @ 2017 by Nelson Education Ltd.