

Chapter 13

Sustaining Aquatic Biodiversity

Copyright © 2017 by Nelson Education Ltd.

Key Concepts

Aquatic biodiversity

- Importance
- Human impacts
- Protect, manage, sustain, restore
 - Marine wildlife and fisheries
 - Lakes and rivers
 - Wetlands

Copyright © 2017 by Nelson Education Ltd.

-

Case Study: A Biological Roller Coaster Ride in Lake Victoria

Challenges to biodiversity since 1980

- Introduction of Nile perch
- Eutrophication resulting in loss of algae-eating cichlids
- Invasion of water hyacinth
- Nile perch now being overfished

Copyright © 2017 by Nelson Education Ltd.

Case Study: A Biological Roller Coaster Ride in Lake Victoria

Introduction of Nile perch

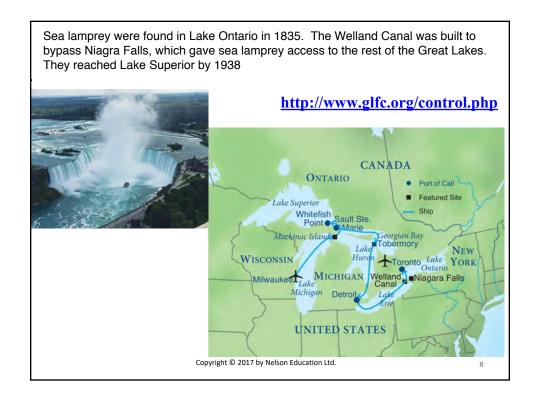
Loss of native cilchilds

Copyright © 2017 by Nelson Education Ltd.

-

Case Study: the Great Lakes

Case Study: Great Lakes


Lamprey introduced from the ballast of ships

Invasive species – parasitic on Lake Trout and other species

Copyright © 2017 by Nelson Education Ltd.

Zebra mussels – discovered in Great Lakes in 1986. Quagga mussels 1989

https://invasivemusselcollaborative.net/about/mussel-facts/

Copyright © 2017 by Nelson Education Ltd.

9

A grocery cart covered in mussels

Copyright © 2017 by Nelson Education Ltd.

Patterns of Marine Biodiversity

We know comparatively little about marine (and freshwater) biodiversity.

Highest diversity habitats are

- Coral reefs
- Estuaries
- Deep-ocean floor

Coastal diversity > Open sea

Benthic (bottom) diversity > Pelagic (surface)

Lowest diversity in the mid-depth open ocean

Copyright © 2017 by Nelson Education Ltd.

11

Strategies to Protect North American Coastal Waters

- Comprehensive legislation
- Federal funding
- Focus fisheries management on whole ecosystems and habitats
- Establish marine network linked by corridors

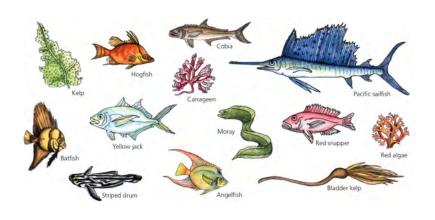
Copyright © 2017 by Nelson Education Ltd.

Why Should We Care About Aquatic Biodiversity?

Marine habitats provide important economic and ecological services.

Food

Medication


Freshwater also important

Provide economic and ecological services worth trillions of dollars each year

Copyright © 2017 by Nelson Education Ltd.

13

Marine Biodiversity

Copyright © 2017 by Nelson Education Ltd.

Freshwater Biodiversity

Copyright © 2017 by Nelson Education Ltd.

15

Human Impacts on Aquatic Biodiversity: Habitat Loss and Degradation

Loss of 50% of coastal wetlands Severe damage to >25% of coral reefs

- At current rate, another 70% lost by 2050

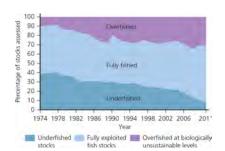
Loss of >33% of mangrove forest swamps

Degradation of bottom habits by trawling

Copyright © 2017 by Nelson Education Ltd.

Human Impacts on Aquatic Biodiversity: Commercial Fishing and Fish Populations

Seventy-five percent of species overfished


Commercial extinction

A 2010 UN report estimates commercially viable fish will be gone by 2050

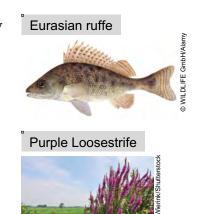
Decrease in size and trophic level of fish

Stocks of some species down by 90%

Problems of bycatch

Source: FAO 2014, WWF 2014

Copyright © 2017 by Nelson Education Ltd.


17

Human Impacts on Aquatic Biodiversity: Non-Native Species

Introduced species may displace native ones

- Deliberate introduction
- Accidental introduction via ship ballast water

Copyright © 2017 by Nelson Education Ltd.

Protecting and Sustaining Marine Biodiversity

Challenges

Rapid coastal development

Damage not visible International waters under no single jurisdiction

Possible Solutions

National fishing laws International treaties

- 1975 Convention on International Trade in Endangered Species (CITES)
- 1979 Global Treaty on Migratory Species
- 1995 International Convention on Biological Diversity

Copyright © 2017 by Nelson Education Ltd.

19

Endangered and Threatened Marine Mammals **Threatened Marine Mammals** **NOTIC CEAN** **NO

Major species of sea turtles

Copyright © 2017 by Nelson Education Ltd.

21

Endangered Sea Turtles

Leatherback 188 centimetres Kemp's ridley 76 centimetres Hawksbill 89 centimetres

Loss of beach habitat where eggs laid Human removal of eggs Use of turtles for food, medicine, clothing Bycatching

Now international agreements to protect sea turtles

Copyright © 2017 by Nelson Education Ltd.

Case Study: Should Commercial Whaling Be Resumed?

Size and surfacing behaviour made whaling easy. Technology increased rate of mass slaughter 1975: Commercial extinction of 8 of 11 species International Whaling Commission (IWC)

- 1946: Quotas failed due to poor estimates and unenforceability
- 1986: Complete moratorium

Disagreement between countries whether ban can be lifted

Continued whaling by some countries for "science"

Copyright © 2017 by Nelson Education Ltd.

23

What Is the Role of International Agreements and Protected Marine Sanctuaries?

Nations control 36% of ocean's surface and 90% of fish stocks.

Global system of marine protected areas protects 3.4% of ocean area.

Moveable marine reserves

But less than 1% of oceans are currently protected.

Copyright © 2017 by Nelson Education Ltd.

Managing and Sustaining Marine Fisheries

Fishery Regulations

Set low catch limits

Improve monitoring and enforcement

Economic Approaches

Reduce or eliminate fishing subsidies Certify sustainable fisheries

Protect Areas

Establish no-fishing areas

Establish more marine protected areas

Consumer Information

Label sustainably harvested fish

Publicize overfished and threatened species

Bycatch

Use nets that allow escape of smaller fish

Use net escape devices for seabirds and sea turtles

Aquaculture

Restrict coastal locations of fish farms Improve pollution control

Nonnative Invasions

Kill or filter organisms from ship ballast water

Dump ballast water at sea and replace with deep-sea water

Copyright © 2017 by Nelson Education Ltd.

25

Managing and Sustaining Marine Fisheries

Maximum Sustained Yield (MSY)

- Difficult to estimate ecosystem interactions
- Hastened collapse of stocks

Optimum Sustained Yields (OSY)

- Provides more room for error
- Takes into account interaction with other species

Multispecies Management

Copyright © 2017 by Nelson Education Ltd.

Case Study: Management Gone Wrong—Grand Banks Cod

Technology enhanced fishing operations

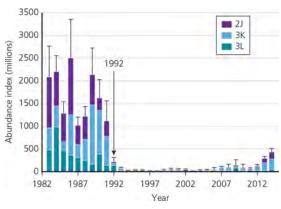
Canada declared 200-mile zone to protect cod

NAFO set limits but some countries ignored

Government ignored warnings for 12 years

1992 moratorium set on cod 1994 Canadian Fisheries Protection Act

Seized Spanish trawler illegally fishing


Groundfish catch collapsed by 78% from 1990 to 2002

Copyright © 2017 by Nelson Education Ltd.

27

Grand Banks Cod Population Collapse

Source: Adapted from Fisheries and Oceans Canada, NORTHERN (NAFO DIVS. 2J3KL). This does not constitute an endorsement by Fisheries and Oceans Canada of this product. COD STOCK UPDATE, Canadian Science Advisory Secretariat Newfoundland and Labrador Region Science Response 2015/018. Page 3 at http://www.dfo-mpo.gc.ca/csas-sccs/publications/scr-rs/2015/2015_018-eng.pdf.

Copyright © 2017 by Nelson Education Ltd.

Diversifying Demands on the Fishery

NL response to 1992 cod moratorium

Pursuit of a wider range of food possibilities

- Turbot, redfish, yellowtail flounder, hake, herring, and mackerel
- Snow crabs, shrimps, lobsters, clams, whelks, and scallops

Copyright © 2017 by Nelson Education Ltd.

29

Diversifying Demands on the Fishery

Total seafood harvest value doubled by 2002

- Increased compared to when cod was the sole focus
 Growth of aquaculture
- Atlantic salmon, steelhead trout, and blue molluscs
- Beginning to investigate farming cod

Copyright © 2017 by Nelson Education Ltd.

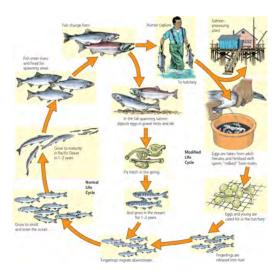
Case Study: Managing West Coast Salmon—A Complicated Issue

West Coast salmon fishery in decline

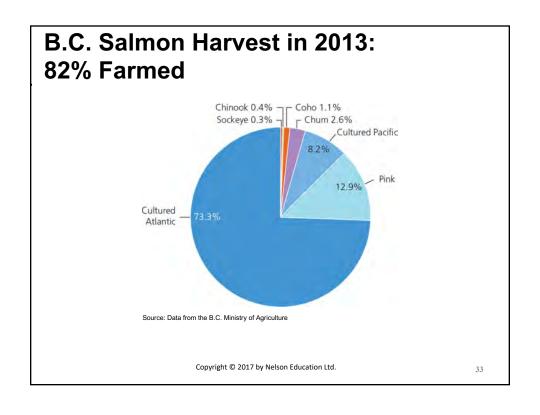
- Reduced by 80% of value between 1990–2002

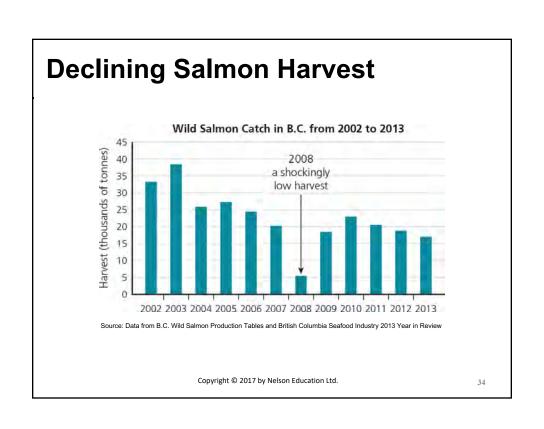
Technology enhanced efficiency

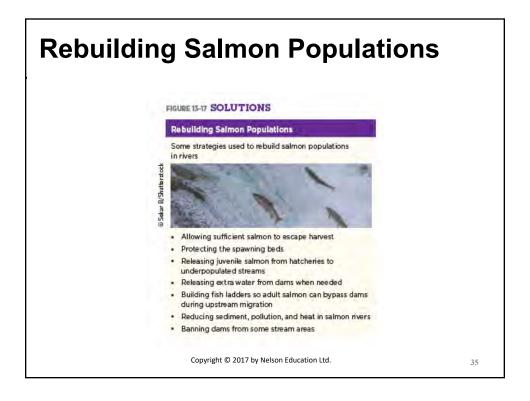
International dimension with Canada and the United States

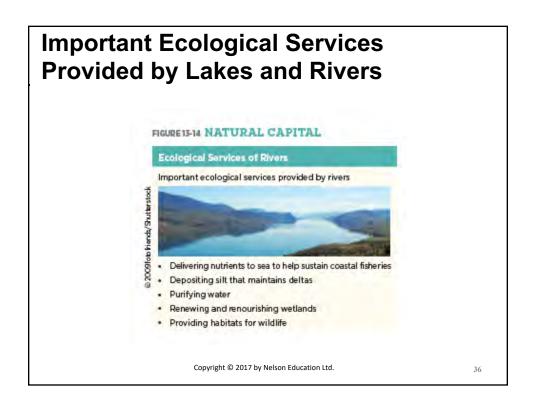

Life cycles complicate management.

Salmon fluctuate due to both human and environmental influences.


Copyright © 2017 by Nelson Education Ltd.


31


Life Cycle of Wild Salmon



Copyright © 2017 by Nelson Education Ltd.

Protecting, Sustaining, and Restoring Lakes and Rivers

Case Study: Great Lakes Invasion

Invaded by at least 162 species

- Lamprey one of biggest threats
- Zebra mussels
- Quagga mussel

Asian carp

- Escaped from aquaculture sites
- Working way toward Great Lakes

Copyright © 2017 by Nelson Education Ltd.

37

How Can Freshwater Fisheries Be Managed and Sustained?

Building and protecting populations

Preventing overfishing

Maintaining habitat quality

Public education

Enforcement

Copyright © 2017 by Nelson Education Ltd.

Science Focus: A Fish-Management Problem

Lake Nipissing walleye harvest

Management includes:

Roving inspections

Enforcing limits on size and quantity of fish in catch

Studying conditions

Counting eggs to assess fertility

Measuring length, weight, age and gender of fish

Copyright © 2017 by Nelson Education Ltd.

39

Protecting, Sustaining, and Restoring Wetlands

FIGURE 13-22 SOLUTIONS **Protecting Wetlands** Ways to help sustain wetlands · Protect existing wetlands. Develop incentives and appreciation for wetlands.

- Steer development away from existing wetlands.
- Require creation and evaluation of a new high-quality wetland before destroying an existing wetland.
- Restore degraded wetlands.
- · Control invasions by non-native species.

Copyright © 2017 by Nelson Education Ltd.

How Are Wetlands Regarded in Canada?

Wetlands diminishing in Canada

- Over 70% of wetlands destroyed

North American Waterfowl Management Plan

Convention on Wetlands of International Importance (Ramsar)

Sackville Waterfowl Park

Copyright © 2017 by Nelson Education Ltd.

41

Checking Our Progress at Sustaining Biodiversity

Proportion of fish stocks within safe biological limits decreased

- Only 22% of stocks sustainable (40% in 1970)

Proportion of marine areas protected increased

- Still only 3.4% of marine ecosystems

Copyright © 2017 by Nelson Education Ltd.

Conclusion

Comparatively little is known about aquatic biodiversity.

Efforts at protection have been marginally effective.

Conservation efforts focus on gathering data—we need more information to make better decisions.

Copyright © 2017 by Nelson Education Ltd.