BIOLOGY 1100

VANCOUVER COMMUNITY COLLEGE

Instructor: Maria Morlin

November 2020 – hybrid course

Drosophila fly lab – monohybrid cross

Outline

- Objectives
- Background information
- Robyn demonstration summary
- Results of cross experiment
- Analysis and conclusion of parent genotypes
- Notes on flies
- Resources

Objectives

- Investigate the efficacy of using Drosophila (fruitflies) for genetics studies
- Distinguish between morphologies
- Conduct a monohybrid or dihybrid cross
- Collect and count the F1 generation
- Analyze results

Fruit flies in genetics studies (just ask David Suzuki – he spend years in a fly lab)

- Fruit flies *Drosophila melanogaster* have been used in genetics studies for years a model organism because:
 - Brief generation time
 - Produce large numbers of externally laid embryos
 - Can be genetically modified
 - Low cost
 - Genome 60% homologous to human genome
 - Can be used to discover mechanisms controlling development and survival.
 - 14000 genes each with a dedicated page on "Flybase"
 - Has led to a few Nobel Prizes in Physiology or Medicine

Demonstration

Robyn demonstrated:

- 1. The fruit fly life cycle
- 2. The vial in which chosen genotype males and females were placed to mate.
- 3. Traits are either wildtype (normal), or mutants
 Red eyes are wildtype, white and sepia eyes mutants
 Normal wings are wildtype, vestigial wings are mutant
- She showed the difference between males and females: females have a larger abdomen, and no sex combs.
 Males have a darker abdomen.
- 2. Robyn demonstrated how the flies are kept on ice for counting on a petri dish under the dissecting scope.
- Robyn then counted the F1 generation of the Red eye X sepia eye cross: counting males and females and their phenotypes

Results

Drosophila melanogaster Genetics Lab – Class Summary Results

Table 1: Sepia Eye vs. Red Eye (Wild Type)

Robyn Wood, Nov 12th, 2020

Category	1	2	3	4	5	6	7	8	Total
Male, Red eyes									24
Male, Sepia eyes									5
Female, Red eyes									31
Female, Sepia eyes									9

Male vs Female	
Total # Male:	
Total # Female:	
Overall Total #:	

Sepia vs Red Eyes	
Total # Red:	
Total # Sepia:	
Overall Total #:	

Analysis

- Students will analyze the preceding data and determine:
 - Whether alleles for eye colour are sex-linked or autosomal
 - Genotypes of the parent generation

Notes on flies

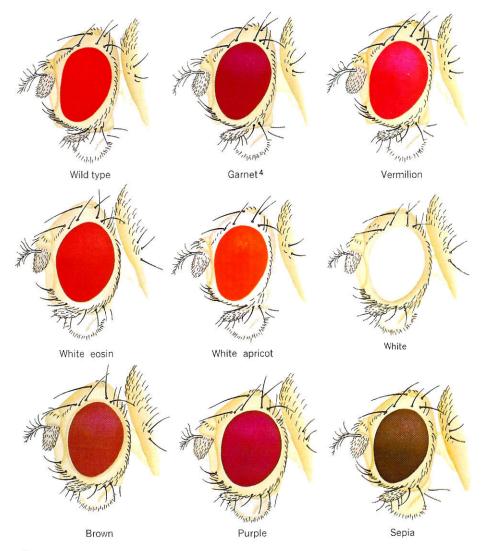
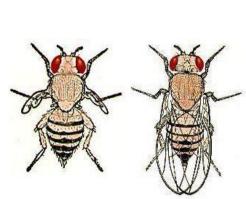
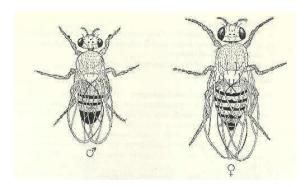




Plate I. Some eye colors in Drosophila melanogaster. (After E. M. Wallace, in An Introduction to Genetics by Sturtevant and Beadle, Saunders, 1938.)

Males versus Females

- Male has sex combs on front legs (appear as small black dots)
- Male is smaller
- Male abdomen is more rounded and darker

Resources

For more information I would recommend reading:

https://www.sciencedirect.com/science/article/pii/S1369702111701134